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1. INTRODUCTION AND STATEMENT OF RESULTS

Let M be a set of real numbers having at least n elements and let f(t) be
a real valued function defined on M. Assume n ~ 2; then a sequence
S = {Xi; i = 1, ..., n} of elements of M is called a strong (weak) alternation
of f of length n if and only if the following conditions hold.

(1 )

and either (_I)i f(x i) is positive (nonnegative) for all i, or (_I)i f(x;) is
negative (nonpositive) for all i. The same sequence S is called a strong
(weak) oscillation of f of length n if. and only if (1) holds and either
(-I)i[f(x;)-f(x;_d] is positive (nonnegative) for i=2, ...,n, or
( - l)i [f(x;) - f( x i-I)] is negative (nonpositive) for i = 2, ..., n.

Let U be an n-dimensional linear space of real valued functions defined
on M and assume that M has at least n + 1 elements. We say that U is a
Haar space provided that the only element of U that has a weak alter­
nation of length n + 1 is the zero function. It is well known that U is a
Haar space if and only if for any basis {II' ...,fn} of U, det[/;(xj );

i, j = 1, ..., n] has constant (and nonzero) sign for all sets {x;; i = 1, ..., n} of
points of M that satisfy (1) (cr. Zielke, [1; Lemma 3.1]). A basis of a Haar
space is called a Cebysev system.

In [2], Kurshan and Gopinath proved that if f(t) is a function with a
weak alternation of length n but with no weak alternation of length n + 1,
it can be embedded into an n-dimensional Haar space, i.e., that there is an
n-dimensional Haar space containing f They also raised the question of
whether this result holds in the continuous case, i.e., whether if f is
continuous then it can be embedded into a Haar space of continuous
functions. Haverkamp and Zielke settled this question in the negative in
[3] by showing that the function g(t)=t3 [1+(t/2)+cos(n/t)], t>O,
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g(O) = 0, cannot be embedded into a Haar space of continuous functions
on [0, (0). What makes this example even more remarkable is that g(t) is
continuously differentiable.

The question naturally arises as to what are the necessary and sufficient
conditions for a continuous function to be embeddable into a Haar space
of continuous functions. A clue can be obtained by noticing that the
function g(t) defined in the preceding paragraph has strong oscillations of
arbitrary length. In fact, we have

THEOREM 1. Let M be an open interval and assume that f(t) is con­
tinuous in M. Then the following propositions are equivalent:

a. f(t) can be embedded into an n-dimensional Haar space of con­
tinuous functions.

b. There is a strictly positive and continuous function w(t) on M such
that f(t)/w(t) has no weak oscillation of length n + 1 on M.

We call {II' ,fn} a Markov system (or a complete Cebysev system), if
and only if {II' , fi} is a Cebysev system for i = 1, ..., n. A Markov system
is called normalized if and only if fl == 1. (Note: Zielke ([ 1]) uses the terms
"normed" or "1-normed.") Finally, the linear span of a (normalized)
Markov system is called a (normalized) Markov space. Theorem 1 is a
rather straightforward consequence of

THEOREM 2. Let M be an interval (open, closed or semiopen, and either
bounded or unbounded), and assume that f( t) is continuous on M. Then the
following propositions are equivalent:

a. f( t) can be embedded into an n-dimensional normalized Markov
space of continuous functions.

b. f(t) has no weak oscillation of length n + 1 on M.

Remark. An inspection of the proof of Theorem 2 reveals that b is
satisfied if f(t) is embedded in any n-dimensional Markov space, even if
not all the functions in the space are continuous.

2. PROOFS

Proof of Theorem 2. If f(t) can be embedded into an n-dimensional
normalized Markov space, then b follows from [1, Theorem 8.8].

Assume now that b is satisfied. It is then clear that f(t) is of bounded
variation in any closed subinterval of M. For any interval [ex, /1] contained
in M, let V(f, ex, /1) denote the total variation of f on [ex, /1]. Let ~ be an
arbitrary but fixed point in M, and define g(t) to equal V(f,~, t) if t ~~,
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and - V(f, t, ~) if t <~. Since f(t) is continuous it is clear that also g(t) is
continuous. Moreover g(t) must be strictly increasing, otherwise f would
be constant in some interval and, since f cannot have a weak oscillation of
length n + 1, this would be a contradiction. It will thus suffice to prove the
assertion for the function v(t) = f[(g-I(t)], whose domain is the interval
1= g(M) and which clearly cannot have a weak oscillation of length n + 1.

By hypothesis, f has at most n - 2 local extrema in (inf M, sup M), say
XI<'" <xp' With Xo= -00 and xp+l=oo, let M;=(x;,x;+dnM for
i = 0, 1, ..., p. Wihout loss of generality let (-1)j f be strictly increasing on
M j for each j. Then v is a linear spline with knots in g(xd, ..., g(xp) and
derivative (-I)j on g(Mj ) for j = 0, 1, ..., p, because for fixed k and
t, u E M k one has v(g(u)) - v(g(t)) = f[g-l(g(U))] - f[g-I(g(t))] =
f(u)-f(t)=(-I)k [V(f,~,u)-V(f,~,t)]=(-I)k [g(u)-g(t)]. It is
therefore easy to see that there is a polynomial p( t), of degree n - 2, such
that sign p(t) = sign v'(t) on I, except at the points g(x;), where v'(t) is
undefined. Setting w(t) = v'(t)/p(t) if t # g(x;) and w(g(x;)) = 1, i = 1, ..., p,
we see that v'(t) = w(t) p(t) on a set II that differs from I by a finite set of
points {xJ. It is also clear that w(t) >°on II'

Let d be an arbitrary point in I, u;(t) = w(t) t;, Yo == 1, and for i = 1, ..., n,
y;(t) = J~ U;_I(S) ds. Since v'(t) = w(t) p(t) on II' v(t) is clearly in the linear
span of the functions y;; thus all we need to prove is that {y i; i = 0, ..., n}
is a Markov system.

Note that if {s;; i = 0, ..., n} is a subset of I,

where V(so, ..., sd denotes the Vandermonde determinant.
Let O~k~n. If {t;; i=O, ..., k} is a subset of I such that

to<t l < ... <tk, we have

det[y;(tj ); i, j = 0, ..., k]

= det[y;(tj ) - Yi(tj _ d; i, j= 1, ..., k]

f ll fl2 flk [k ]= ... n w(s;) V(so, ..., sd dSk_ 1 ••• dso,
to 11 lk-l ;=0

whence the conclusion readily follows. Q.E.D.

Proof of Theorem 1. Assume a is satisfied and let U be an n-dimen­
sional Haar space of continuous functions that contains f From [4] or
[5] we know hat U has a basis that is a Markov system, say {uo, ..., Un _ d.
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Let w = UO, Yi = uJw, and g = f/w. Clearly g can be embedded in the nor­
malized Markov space spanned by the system {Yo, ..., Yn~d, and b follows
from Theorem 2. The converse is a trivial consequence of Theorem 2.

Q.E.D.
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