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1. INTRODUCTION AND STATEMENT OF RESULTS

Let M be a set of real numbers having at least n elements and let f(t) be
a real valued function defined on M. Assume n>=2; then a sequence
S={x;;i=1,.,n} of elements of M is called a strong (weak) alternation
of f of length » if and only if the following conditions hold.

X, < <X, (1)

and either (—1)’ f(x,) is positive (nonnegative) for all i, or (—1) f(x,) is
negative (nonpositive) for all i. The same sequence S is called a strong
(weak) oscillation of f of length n if and only if (1) holds and either
(=1)'[f(x;)—f(x;,_,)] is positive (nonnegative) for i=2,.,n, or
(=1) [f(x;)— f(x;_1)] is negative (nonpositive) for i=2, .., n.

Let U be an n-dimensional linear space of real valued functions defined
on M and assume that M has at least n+ 1 elements. We say that U is a
Haar space provided that the only element of U that has a weak alter-
nation of length n+ 1 is the zero function. It is well known that U is a
Haar space if and only if for any basis {f}, .., f,} of U, det[fix,);
i, j=1, .., n] has constant (and nonzero) sign for all sets {x,; i=1, .., n} of
points of M that satisfy (1) (cf. Zielke, [1; Lemma 3.1]). A basis of a Haar
space is called a Cebysev system.

In [2], Kurshan and Gopinath proved that if f(¢) is a function with a
weak alternation of length # but with no weak alternation of length n + 1,
it can be embedded into an n-dimensional Haar space, i.e., that there is an
n-dimensional Haar space containing f. They also raised the question of
whether this result holds in the continuous case, ie., whether if f is
continuous then it can be embedded into a Haar space of continuous
functions. Haverkamp and Zielke settled this question in the negative in
[3] by showing that the function g(t)=r>[1+ (#/2)+ cos(n/t)], t>0,
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2(0) =0, cannot be embedded into a Haar space of continuous functions
on [0, o). What makes this example even more remarkable is that g(¢) is
continuously differentiable.

The question naturally arises as to what are the necessary and sufficient
conditions for a continuous function to be embeddable into a Haar space
of continuous functions. A clue can be obtained by noticing that the
function g(r) defined in the preceding paragraph has strong oscillations of
arbitrary length. In fact, we have

THEOREM 1. Let M be an open interval and assume that f(t) is con-
tinuous in M. Then the following propositions are equivalent:

a. f(t) can be embedded into an n-dimensional Haar space of con-
tinuous functions.

b. There is a strictly positive and continuous function w(t) on M such
that f(t)/w(t) has no weak oscillation of length n+1 on M.

We call {f}, .., f,} a Markov system (or a complete Cebysev system), if
and only if {f}, .., f;} is a CebySev system for i= 1, ..., n. A Markov system
is called normalized if and only if f; = 1. (Note: Zielke ([1]) uses the terms
“normed” or “l-normed.”) Finally, the linear span of a (normalized)
Markov system is called a (normalized) Markov space. Theorem 1 is a
rather straightforward consequence of

THEOREM 2. Let M be an interval (open, closed or semiopen, and either
bounded or unbounded), and assume that f(t) is continuous on M. Then the
Sfollowing propositions are equivalent :

a. f(t) can be embedded into an n-dimensional normalized Markov
space of continuous functions.

b.  f(t) has no weak oscillation of length n+1 on M.

Remark. An inspection of the proof of Theorem 2 reveals that b is
satisfied if f(r) is embedded in any n-dimensional Markov space, even if
not all the functions in the space are continuous.

2. PROOFS

Proof of Theorem 2. 1If f(t) can be embedded into an n-dimensional
normalized Markov space, then b follows from [1, Theorem 8.8].

Assume now that b is satisfied. It is then clear that f(¢) is of bounded
variation in any closed subinterval of M. For any interval [a, §] contained
in M, let V(f, a, B) denote the total variation of f on [a, 1. Let £ be an
arbitrary but fixed point in M, and define g(z) to equal V(f, & ¢) if 12 ¢,
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and —V(/f, t, &) if t <& Since f(¢) is continuous it is clear that also g{¢) is
continuous. Moreover g(¢) must be strictly increasing, otherwise f would
be constant in some interval and, since f cannot have a weak oscillation of
length n + 1, this would be a contradiction. It will thus suffice to prove the
assertion for the function v(¢t)= f[(g '(¢)], whose domain is the interval
I= g(M) and which clearly cannot have a weak oscillation of length n+ 1.

By hypothesis, / has at most n— 2 local extrema in (inf M, sup M), say
X < - <X, With xo= —~c0 and x,, =00, let M,=(x;, x;, )N M for
i=0,1,.., p. Wihout loss of generality let (— 1)’ 1 be strictly increasing on
M; for each j. Then v is a linear spline with knots in g(x,), .., g(x,) and
derivative (—1)’ on g(M,) for j=0,1,.., p, because for fixed k and
t,ueM, one has v(g(u))~v(g(1))=/f[g '(g@)]~flg '(g(t)]=
S@)—fO)=(=1) VL&) -V(£E0]=(-1) [gu)—g(n)] Tt is
therefore easy to see that there is a polynomial p(z), of degree n— 2, such
that sign p(¢) =sign v’(¢) on I, except at the points g(x,), where v'(¢) is
undefined. Setting w(t) =v'(t)/p(¢) if t # g(x,) and w(g(x;))=1, i=1, .., p,
we sec that v'(¢) = w(t) p(¢) on a set I, that differs from I by a finite set of
points {x,}. It is also clear that w(¢)>0 on I,.

Let d be an arbitrary point in I, u,(f)=w(t)t, yo=1, and for i=1, .., n,
yAt)=[4u;_(s) ds. Since v'(r)=w(t) p(t) on I, v(z) is clearly in the linear
span of the functions y,; thus all we need to prove is that {y; i=0, .., n}
is a Markov system.

Note that if {s,; i=0, .., n} is a subset of I,

k
det[ufs)); i, j=0, .., k]= [ I1 w(sj)] V(Sgs s Sk),

i=0

where V(s,, ..., 5;) denotes the Vandermonde determinant.
Let 0<k<n If {1; i=0,.,k} is a subset of I such that
to<t;< --- <t,, we have

det[y{1)); 4, j=0, ... k]

=det[y,(tj)‘- yi(tj— 1)’ i, .]= 15 eres k]

n ro2 % k
=,[ .[ J‘ [n w(si)] V(Sgs ws S ) dSg_( +++ dsg,
o “1 g_1Li—9

whence the conclusion readily follows. Q.E.D.
Proof of Theorem 1. Assume a is satisfied and let U be an n-dimen-

sional Haar space of continuous functions that contains /. From [4] or
[5] we know hat U has a basis that is a Markov system, say {ug, ..., 4,_}-
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Let w=uq, y,=u/w, and g= f/w. Clearly g can be embedded in the nor-

malized Markov space spanned by the system { o, .., ¥,_}, and b follows

from Theorem 2. The converse is a trivial consequence of Theorem 2.
Q.ED.
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